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In the present investigation, heat transfer analysis of peristaltic flow in the presence of heat
generation against high values of the Reynolds number using a numerical technique is pre-
sented. The Finite Element Method with the assistance of Galerkin’s variational method has
been used on the governing Navier-Stokes equation in the stream-vorticity form. The graphs
of computed longitudinal velocity, temperature distribution and pressure rise per wavelength
are plotted against different values of an emerging parameter using a stream function and
vorticity. The presented results are valid beyond the restrictions of long wavelength and low
Reynolds number limits. Moreover, large values of the Reynolds number increases pressure
rise per wavelength.
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1. Introduction

The phenomena of wave relaxation and contraction incorporated by the walls of a flexible tube
are known as the peristaltic fluid. These flows have a key role in fluid transportation for both
the living organism and industrial pumping. Blood flow through arteries and in small blood
vessels, gastrointestinal tract, transportation of urine from the kidney to the urinary bladder, bile
duct/glandular ducts, etc. are examples of physiology flows. This principle is also found in many
biomedical instruments like heart-lung machine and blood pumps used in dialysis. The peristaltic
motion also occurs in many industrial applications like transportation of the toxic liquid used in
the nuclear industry which is used to avoid contamination from the outside environment and also
in sanitary fluid transportation in many other situations. In the treatment of diseased tissues, the
heat transfer is also significantly used in the peristaltic motion. The theoretical analysis of two-
-dimensional peristaltic flows for finite Reynolds numbers (Re) is challenging due to nonlinearity
amid the flow field and moving wall. Most of the analytical studies used perturbation series
against the small parameter and, in consequence, the validation range is small there. However,
this technique does offer categorical information about the physical effects of the parameters,
and the obtained results are helpful for checking the accuracy of the numerical methods.

After the innovatory works of Latham (1966) in his master thesis, Shapiro et al. (1969) and
Fung and Yih (1969) on peristaltic flow, we found that many analytical, several investigations
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have been carried out theoretically or experimentally (Weinberg et al., 1971; Lew et al., 1971;
Jaffrin, 1973; Takabatake and Ayukawa, 1982, Takabatake et al., 1987, 1988, 1990; Kumar and
Naidu, 1995; Hayat et al., 2005). The common thing in these studies is that they all consid-
ered long wavelength and low Reynolds number assumptions because these type of studies are
extremely difficult in the presence of higher order non-linearity between the flow field and the
moving wall. Recent investigations (Ali et al., 2008; Hayat et al., 2008; Mekheimer, 2008; Tri-
pathi, 2013) dealing with nonlinear two-dimensional peristaltic flows give the analytical solution
by considering the same assumptions discussed earlier. In numerical analysis, Takabatake et
al. (1988) employed the finite difference method to solve the Navier-Stokes equations for two-
-dimensional peristaltic flow problems for moderate Reynolds numbers and wave numbers. Tak-
abatake et al. (1987, 1990) also employed finite element methods for two-dimensional peristaltic
flows. Kumar and Naidu (1995) also applied the finite element method and obtained results
which were convergent up to Re = 100. Hayat et al. (2005) considered the Johnson-Segalman
fluid transported peristaltically under the inducement of a magnetic field.

Yi et al. (2002) carried out the study of flow between two vibrating peristaltic walls in a
closed cavity. The heat and mass transfer effects received considerable attention from many
researchers because of their several applications in the chemical industry. The slip effects and
heat transfer on peristaltic flow were carried out by Hayat et al. (2010). Kothandapani and
Srinivas (2008) discussed the peristaltic flow through a porous space with compliant walls. They
observed the effects of heat and mass transfer with magnetic effects and observed that the heat
effects were less in a curved channel in comparison to a straight channel. Many more studies
were also found on heat transfer in literature (Srinivas and Kothandapani, 2008; Eldabe et al.,
2008; El-Sayed et al., 2011; Abo-Eldahab et al., 2011).

In this article, we discussed the numerical solution for nonlinear heat transfer on peristaltic
flow using the finite element method. The non-linear governing PDE are reduced to the stream
function-vorticity ψ-ω. The stream-vorticity form has advantages over using a simple form of
Navier-Stokes equation. The main advantage of using the stream-vorticity ψ-ω formulation is
that it helps us to reduce the number of unknowns from three to two. The other advantage
using this formulation is that the vorticity is computed directly from the governing equations
and does not find the curl of the velocity field. Also, it requires no restriction on the magnitudes of
different parameters involved in the equation. The solution obtained by this formalism is utilized
to illustrate the effects of moderate Reynolds numbers and wave numbers on various features of
peristaltic motion. The results obtained through the present scheme are also compared with the
existing results.

2. Problem formulation

Here, consider two-dimensional unsteady, incompressible viscous flow in an infinite channel. The
width of the channel is 2a. The upper wall of peristaltic flow is maintained at temperature T1.
Assume that the walls of the channel are electrically insulated and move peristaltically with
velocity c. The Cartesian coordinate system (X,Y ) is used in such a way that propagation of
the wave is along the X-axis, and the Y -axis is considered perpendicular to the direction of the
flow (see Fig. 1).

The H(X, t) is the domain of the problem and is defined as

H(X, t) = a− b cos
2π(X − ct)

λ
(2.1)

where λ, a and b are the wave length, mean distance of the wall from the central axis and the
wave amplitude respectively. c is the velocity with which the sinusoidal wave progresses along
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Fig. 1. Geometry of the flow problem

the wall in the X-direction. Using the velocity relations x∗ = X − ct, y∗ = Y , u∗ = U − c and
v∗ = V from the lab frame to the wave frame, where U, V and u, v are the corrdinates of velocity
in the lab and wave frames, respectively. The governing equations in the wave frame of reference
are as follows

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0 (2.2)

and

ρ
(

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗

)

= −
∂p∗

∂x∗
+ µ
(∂2u∗
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+
∂2u∗

∂y∗2

)

ρ
(
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= −
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ρcp
(
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= κ∗
(∂2T ∗
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+
∂2T ∗

∂y∗2

)

+Q0

(2.3)

where Q0 is the heat generation parameter. In the wave frame, equation (2.1) takes the form

η(x∗) = a− b cos
(2πx∗

λ∗

)

(2.4)

and the boundary conditions are as follows:
— at y∗ = 0

v∗ = 0
∂u∗

∂y∗
= 0

∂T ∗

∂y∗
= 0 (2.5)

— at y∗ = η(x∗)

u∗ = c v∗ =
2πb

λ
sin
2πx∗

λ
T ∗ = T1 (2.6)

Since the flow rate q∗ in the wave frame is constant at each cross section of the channel, so we
obtained an extra boundary condition, i.e.

ψ∗ = 0 at y∗ = 0 and ψ∗ = q∗ at y∗ = η(x∗) (2.7)

The flow rate in the wave frame q∗ and the time mean flow in the laboratory frame Q∗ can be
related with the expression q∗ = Q∗ − cH. The following dimensionless variables are introduced
to make the problem simple and general

u =
u∗

c
v =

v∗

c
x =

x∗

λ

y =
y∗

a
ψ =

ψ∗

ca
q =

q∗

ch

η =
η∗

a
p =

a2

λµc
p∗(x∗) θ =

T ∗ − T0
T1 − T0

β =
Q0a

2

κ∗(T1 − T0)
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where T1 and T0 are the surface and initial temperatures, respectively. Using the velocity stream
function relation u = ∂ψ/∂y and v = −α∂ψ/∂x in Eqs. (2.3) and (2.4) and eliminating the
pressure gradient, we have the following system of equations in the stream-vorticity form

α2
∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω (2.8)

and

Re
(∂ψ

∂y

∂ω

∂x
−
∂ψ

∂x

∂ω

∂y

)

= ∇2ω RePr
(∂ψ

∂y

∂θ

∂x
−
∂ψ

∂x

∂θ

∂y

)

= ∇2θ + β (2.9)

where Re = caα/ν, Pr = µcp/κ
′, α = a/λ and β are the Reynolds number, Prandtl number,

wave number and heat generation parameter, respectively. The boundary conditions in terms of
ψ(x, y) are reduced to:
— at y = 0

ψ = 0
∂2ψ

∂y2
= 0

∂ψ

∂x
= 0

∂θ

∂y
= 0 (2.10)

— at y = η(x)

ψ = q
∂ψ

∂y
= −1

∂ψ

∂x
= 2πφ sin(2πx) θ = 1 (2.11)

in which

ω = α
∂v

∂x
−
∂u

∂y
∇2 = α2

∂2

∂x2
+

∂2

∂y2
(2.12)

3. Numerical analysis

For the numerical analysis of the current model, governing equations (2.8) and (2.9) with bound-
ary conditions (2.10) and (2.11) are numerically solved by using the finite element method. It
is important to note that when Re → 0 and α → 0, Eqs. (2.9) reduce to the ordinary differ-
ential equation. Due to continuity of the flow, we consider one wave at a time and then move
to the second one and so on. In all the cases, highly convergent results have been obtained in
2-4 iterations with non-uniform meshing using pdetool in MATLAB for different values of the
parameters involved. The stream function and vorticity is approximated by

ψ =
n
∑

k=1

ψkNk θ =
n
∑

k=1

θkNk ω =
n
∑

k=1

ωkNk (3.1)

where ψk and ωk are the element nodal approximations of ψ and ω. Then the Galerkin finite
element method is applied to governing equation (3.2)2,3 as
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(3.2)
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where w1, w2 and w3 are weight functions. After simplifying equation (3.2), we obtain
∫
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(3.3)

Introducing equation (3.1) into equations (3.3) and considering the discretized domain, we have

−
∑

i
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∑

i

Aekiψi = S
k
n

e
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where
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The global system in the matrix form is

KA = F (3.6)

where the entries of the above matrices are

K = {Kij} =
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Aeki ReCekijωi 0

0 RePrCekijψi −A
e
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e

0
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e
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e







(3.7)

The non-linear equations are then solved using the Newton-Raphson method. The solution
process is iterated until the subsequent convergence condition is satisfied.

4. Pressure analysis

The pressure rise is an important part in the study of the peristaltic flow. To evaluate pressure
in the channel, it is enough to evaluate only the central part of the wave. The pressure rise per
wave length can be evaluated by the expression
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∆Pλ =

λ
∫

0

∂p

∂x
dx (4.1)

where ∂p/∂x is obtained directly from dimensionless form of the Navier-Stokes equation.

5. Numerical results and discussion

We discretize the considered domain into a mesh of triangular elements each containing six nodes
per element. First, a solution on each triangular mesh is found and then they are assembled to a
global system. Finally, the solution has been obtained by applying the Newton-Raphson method.
In all cases, highly convergent results are obtained by our own code built in MATLAB with
a tolerance of 10−14 in 3-5 iterations. Computation of the developed problem is performed in
terms of velocity, streamlines in the wave and lab frames, vorticity and pressure against pertinent
parameters including the amplitude ratio φ, Reynold’s number Re, volume flow rate Q, Prandtl
number Pr, the wave number α and heat generation parameter β.

5.1. Validation

The results obtained by the developed code are validated with the result presented by Jaffrin
(1973) as the limiting case, i.e. Re→ 0 and α→ 0. The results presented by Jaffrin (1973) are
valid for small values of the Reynolds and wave number. Figure 2 shows the computed pressure
rise per wavelength for different values of φ, when α = 0.05 and Re = 1.0 and results with Jaffrin
(1973), which validates the accuracy of our computed results. Figure 3 presents the graph of the
computed pressure rise for different values of the wave number with a fixed Reynolds number
and the comparison with the result of Jaffrin (1973) and found in good agreement.

Fig. 2. Comparison of the computed pressure rise (solid line) with Jaffrin (1973) (dashed line) for
α = 0.05 and Re = 1.0

5.2. Velocity field

In this Section, we discuss the behavior of longitudinal velocity u and the temperature
profile θ at x = 0 for different values of the time mean flow Q, Reynolds number Re, the wave
number α, Prandtl number Pr and the heat generation parameter β in Figs. 4-7. It is perceived
that the velocity of the fluid has a cosine profile in the entire set of figures. In Fig. 4, we see
that the longitudinal velocity increases in the whole region of the channel by increasing the
values of the time mean flow Q, while an increase in the temperature profile is noted to be very
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Fig. 3. Comparison of the computed pressure with for Jaffrin (1973) (dots) for different values of α with
the fixed value Re = 1.0 and φ = 0.5

Fig. 4. (a) Longitudinal velocity and (b) temperature profile against different values of Q

Fig. 5. (a) Longitudinal velocity and (b) temperature profile against different values of Re

rapid with the time mean flow Q. In Fig. 5a, the longitudinal velocity increases nearly up to the
center of the channel with increasing values of the Reynolds number. However, increasing the
wave number causes a decrease in the velocity up to the lower half of the channel and after it,
the opposite behavior is observed as shown in Fig. 6a. Similarly, by increasing the value of the
Reynolds number, the temperature profile shows increasing behavior. On the other hand, the
wave number helps to control the temperature inside the channel as shown in Fig. 6b. In Figs. 7
and 8, the temperature profile exhibits the same behavior of increasing nature with an increase
in the values of β and Pr.
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Fig. 6. (a) Longitudinal velocity and (b) temperature profile against different values of α

Fig. 7. Temperature profile for different values: (a) of β, (b) of Pr

5.3. Trapping

In this Section, we discuss the most important feature of the peristaltic flow known as
the trapping caused by splitting of streamlines and enclosing in circulating bolus of the fluid
which behaves as a whole peristaltic wave. In Figs. 8-13, we observe the behavior of stream-
lines and isothermal lines for different values of the parameters in the flow domain. In Fig. 8,
we observe that the trapping generously depends on the time-mean flow Q, i.e. the number of
bolus decreases with increasing the magnitude of the time-mean flow and growing tendency to
move towards the wall of the channel. In Fig. 9, we observe that an increase in the Reynolds
number up to 100 causes a small increase in the size of the bolus. Figure 10 shows the be-
havior of isothermal lines for different values of the time mean flow which exhibits that an
increase in this parameter causes an increase in the number of isothermal lines near the cen-
ter of the channel towards the right side. On the other hand, the curvature effects on the
isothermal lines near the center of the channel are reduced. In Fig. 11, we observe that by in-
creasing the Reynolds number, the isothermal lines become smooth near the wall in the case
of small values of the Reynolds number. The curvature effect increases near the wall of the
channel as shown in Fig. 12 for increasing values of β. It is also noted that the number of
isothermal lines increases by increasing the values of β. In Fig. 13, we notice that by increasing
the value of Pr, the curvature effect sharply increases and the number of isothermal lines also
increases.
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Fig. 8. Variation of stream lines in the wave frame for different values of Q with Re = 10,
φ = 0.5, α = 0.5

Fig. 9. Variation of stream lines in wave frame for different values of Re with Q = 1.4, α = φ = 0.5
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Fig. 10. Variation of isothermal lines in wave frame for different values of Q with Pr = 0.7, Re = 10,
α = φ = 0.5 and β = 0.7

Fig. 11. Variation of isothermal lines in wave frame for different values of Re with Pr = 0.7, Q = 1.4,
α = φ = 0.5 and β = 0.7
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Fig. 12. Variation of isothermal lines for different values of β with Re = 10, Q = 1.4, α = φ = 0.5
and Pr = 0.7

Fig. 13. Variation of isothermal lines for different values of Pr with Re = 10, Q = 1.4, α = φ = 0.5
and β = 0.7
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5.4. Pressure field

In this Section, we discussed the pressure rise per wave length against the time mean flow
rate Q in the fixed frame for different Reynolds and wave numbers. Figure 14a shows the graph of
the pressure rise per wave length for different values of Re. We observe that the pressure graph is
linear for small Reynolds numbers, and a nonzero curvature is noted for large Reynolds numbers.
Also it is observed that the pressure increases with an increase in the Reynolds number when
the time mean flow rate Q ¬ 0.45 and decreases when Q > 0.45. In Fig. 14b, the same behavior
is observed in the case of wave numbers but the increasing region is less as compared with the
Reynolds number, i.e. the pressure rise increases when Q ¬ 0.375 and decreases Q > 0.375. Also
the alteration in pressure is much faster in the case of the Reynolds number as compared with
that of the wave number when the time mean flow becomes zero.

Fig. 14. Pressure rise per wave length for various values: (a) of Re against α = 0.1 and φ = 0.5,
(b) of α against Re = 10 and φ = 0.6

6. Conclusion

The finite element analysis of the two-dimensional peristaltic flow with heat transfer is carried
out by imposing any assumptions like in the earlier studies. The numerical result for the stream
function, isothermal lines, pressure rise per wavelength, velocity and temperature profiles are
shown graphically with different values of the parameter involved in the governing equations.
The obtained results are also compared with the available results of Jaffrin (1973), which is
valid only for low Reynolds numbers and for small wavelength. It is found that the obtained
results are significantly different from the previous results without imposing any assumptions.
The observations through the present study are summarized in the following points:

• The longitudinal velocity decreases near the wall of the channel by increasing the Reynolds
number, but increases by increasing the wavelength.

• Temperature increases sharply by an increase in all the parameters while an increase in
the wavelength reduces the temperature.

• The results are well convergent for large values of the Reynolds number.

• The circular trapped bolus increases with increasing values of the Reynolds number.

• The number of isothermal lines decreases near the wall by increasing the Prandtl number,
and opposite behavior is observed for all other parameters.

• The pressure rise per wavelength increases in the augmented pumping region with the
increasing Reynolds number and wavelength of the channel.
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